organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2*E*)-*N*-(3,5-Dibromo-4-methoxyphenyl)-2-(hydroxyimino)acetamide

Simon J. Garden,^a‡ Angelo C. Pinto,^a Fernanda R. da Cunha,^a Silvia P. Fontes,^a A. S. Lima^a and Edward R. T. Tiekink^b*

^aInstituto de Química, Departamento de Quimica Orgânica, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CT, Bloco A, Rio de Janeiro 21949-900, RJ, Brazil, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 18 May 2010; accepted 19 May 2010

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.004 Å; R factor = 0.028; wR factor = 0.090; data-to-parameter ratio = 17.7.

The title compound, $C_9H_8Br_2N_2O_3$, is planar (r.m.s. deviation = 0.030 Å) with the exception of the terminal methyl group which lies out of the plane [1.219 (3) Å]. The conformation about the C=N double bond [1.268 (3) Å] is *E*. An intra-molecular N-H···N hydrogen bond occurs. Linear supra-molecular chains along the *b* axis mediated by O-H···O hydrogen-bonding interactions feature in the crystal structure. These chains are also stabilized by weak C-H···N contacts.

Related literature

For the preparation of isonitrosoacetanilides from aniline derivatives, see: Garden *et al.* (1997). For the use of isonitrosoacetanilides as precursors of pharmacologically important heterocyclic compounds, see: da Silva *et al.* (2001); Garden *et al.* (2002); Matheus *et al.* (2007); Maronas *et al.* (2008). For related structures, see: Briansó *et al.* (1974); Plana *et al.* (1976).

Experimental

Crystal data $C_9H_8Br_2N_2O_3$ $M_r = 351.98$

Monoclinic, $P2_1/n$ a = 10.3841 (2) Å

‡ Additional correspondence author, e-mail: garden@iq.ufrj.br.

b = 8.8535 (1) Å	Mo $K\alpha$ radiation
c = 13.0164 (3) Å	$\mu = 7.05 \text{ mm}^{-1}$
$\beta = 106.356 \ (1)^{\circ}$	$T = 120 { m K}$
V = 1148.24 (4) Å ³	$0.20 \times 0.10 \times 0.01 \text{ mm}$
7 - 4	

Data collection

Nonius KappaCCD area-detector	14309 measured reflections
diffractometer	2643 independent reflections
Absorption correction: multi-scan	2306 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2007)	$R_{\rm int} = 0.036$
$T_{\min} = 0.715, T_{\max} = 1.000$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.028 & 1 \text{ restraint} \\ wR(F^2) &= 0.090 & H-\text{atom parameters constrained} \\ S &= 1.16 & \Delta\rho_{\text{max}} &= 0.77 \text{ e } \text{ Å}^{-3} \\ 2643 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.86 \text{ e } \text{ Å}^{-3} \\ 149 \text{ parameters} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1n \cdots N2$ $O2 - H2o \cdots O1^{i}$ $C2 - H2 \cdots N2^{ii}$	0.88 0.84 0.95	2.30 1.83 2.51	2.702 (3) 2.672 (3) 3.345 (3)	108 175 146

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{5}{2}$; (ii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{5}{2}$.

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. SJG thanks CNPq and FAPERJ for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2689).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Briansó, J. L., Miravitlles, C., Plana, F. & Font-Altaba, M. (1974). Estud. Geol. (Madrid), 30, 423–428.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Garden, S. J., da Silva, R. B. & Pinto, A. C. (2002). *Tetrahedron*, 58, 8399–8412.
 Garden, S. J., Torres, J. C., Ferreira, A. A., Silva, R. B. & Pinto, A. C. (1997). *Tetrahedron Lett*, 38, 1501–1504.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Maronas, P. A., Sudo, R. T., Correa, M. B., Pinto, A. C., Garden, S. J., Trachez, M. M. & Zapata-Sudo, G. (2008). *Clin. Exp. Pharmacol. Physiol.* 35, 1091– 1096.
- Matheus, M. E., Violante, F. D., Garden, S. J., Pinto, A. C. & Fernandes, P. D. (2007). Eur. J. Pharmacol. 556, 200–206.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Plana, F., Briansó, J. L., Miravitlles, C., Solans, X., Font-Altaba, M., Dideberg, O., Declercq, J. P. & Germain, G. (1976). Acta Cryst. B32, 2660–2664.

Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.
Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.

supplementary materials

Acta Cryst. (2010). E66, o1436-o1437 [doi:10.1107/S1600536810018623]

(2E)-N-(3,5-Dibromo-4-methoxyphenyl)-2-(hydroxyimino)acetamide

S. J. Garden, A. C. Pinto, F. R. da Cunha, S. P. Fontes, A. S. Lima and E. R. T. Tiekink

Comment

Isonitrosoacetanilides, readily available from aniline derivatives (Garden *et al.*, 1997), have found use as precursors of pharmacologically important heterocyclic compounds (da Silva *et al.*, 2001; Garden *et al.*, 2002; Matheus *et al.*, 2007; Maronas *et al.*, 2008).

The molecular structure of (I), Fig. 1, is essentially planar with the exception of the terminal methyl group. Thus, the r.m.s. deviation of all non-hydrogen atoms, excluding the methyl-C9 atom, is 0.030 Å; the C9 atom lies 1.219 (3) Å out of the plane. The conformation about the C2=N2 double bond [1.268 (3) Å] is *E*. The observed planarity is partially stabilised by an intramolecular N–H···N hydrogen bond (Table 1). There two other methoxy substituted 2-(hydroxyimino)-*N*-arylacetamide structures available for comparison, *i.e. o*-OMe (Plana *et al.*, 1976) and *p*-OMe (Briansó *et al.*, 1974) derivatives. The geometric parameters in these match closely those in (I). The major difference in the three structures relate to the non-planarity of (I) compared to the planarity in the literature structures. The proximity of the OMe group to two bromido substituents in (I) is the likely explanation for the deviation from planarity in (I). The crystal packing is dominated by O–H···O hydrogen bonding interactions that lead to the formation of a supramolecular linear chain along the *b* axis, Fig. 2 and Table 1. These chains are also stabilised by weak C–H···N contacts, Table 1.

Experimental

The compound was prepared as previously reported from 3,5-dibromo-4-methoxyaniline, hydroxylamine.hydrogen sulfate in aqueous ethanol, containing sodium sulfate and $CCl_3CH(OH)_2$ (Garden *et al.*, 1997). The sample for the crystallographic study was recrystallised from EtOH, m.p. 463 K.

Refinement

The O-, N- and C-bound H atoms were geometrically placed (O–H = 0.84 Å, N–H = 0.88 Å and C–H = 0.95–0.98 Å) and refined as riding with U_{iso} (H) = 1.2-1.5 U_{eq} (parent atom).

Figures

Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2. A view of a supramolecular array in (I) aligned along the b axis. The O–H···O hydrogen bonding interactions are shown as orange dashed lines. Colour code: Br, olive; O, red; N, blue; C, grey; and H, green.

$(2E) \hbox{-} N \hbox{-} (3, 5 \hbox{-} Dibrom o \hbox{-} 4 \hbox{-} methoxy phenyl) \hbox{-} 2 \hbox{-} (hydroxy imino) acetamide$

Crystal data	
$C_9H_8Br_2N_2O_3$	F(000) = 680
$M_r = 351.98$	$D_{\rm x} = 2.036 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2760 reflections
a = 10.3841 (2) Å	$\theta = 2.9 - 27.5^{\circ}$
b = 8.8535 (1) Å	$\mu = 7.05 \text{ mm}^{-1}$
c = 13.0164 (3) Å	T = 120 K
$\beta = 106.356 (1)^{\circ}$	Plate, colourless
$V = 1148.24 (4) \text{ Å}^3$	$0.20\times0.10\times0.01~mm$
Z = 4	

Data collection

Nonius KappaCCD area-detector diffractometer	2643 independent reflections
Radiation source: Enraf Nonius FR591 rotating an- ode	2306 reflections with $I > 2\sigma(I)$
10 cm confocal mirrors	$R_{\text{int}} = 0.036$
Detector resolution: 9.091 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
ϕ and ω scans	$h = -13 \rightarrow 13$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2007)	$k = -11 \rightarrow 10$
$T_{\min} = 0.715, \ T_{\max} = 1.000$	$l = -16 \rightarrow 16$
14309 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.090$	H-atom parameters constrained
<i>S</i> = 1.16	$w = 1/[\sigma^2(F_o^2) + (0.0554P)^2 + 0.0437P]$ where $P = (F_o^2 + 2F_c^2)/3$
2643 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$

149 parameters	$\Delta \rho_{max} = 0.77 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.86 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Br10.51024 (3)0.51328 (3)0.64286 (2)0.03073 (12)Br20.57429 (3)1.12760 (3)0.76735 (2)0.03212 (12)O10.6650 (2)0.4317 (2)1.04372 (14)0.0253 (4)O20.7998 (2)0.6540 (2)1.37265 (15)0.0268 (4)H2O0.81500.74161.39790.040*O30.50326 (19)0.8555 (2)0.61613 (15)0.0248 (4)N20.7577 (2)0.6746 (2)1.26323 (17)0.0228 (5)N10.6742 (2)0.6890 (2)1.04718 (16)0.0234 (5)H1N0.69160.76641.09140.028*C10.6888 (3)0.5517 (3)1.0935 (2)0.0216 (5)C20.7347 (3)0.5508 (3)1.2123 (2)0.0235 (5)H20.74690.45771.25010.028*C30.6344 (3)0.7255 (3)0.9367 (2)0.0217 (5)C40.5979 (3)0.6159 (3)0.8574 (2)0.0221 (5)H40.59950.51180.87550.027*C50.5590 (3)0.6618 (3)0.7211 (2)0.0221 (5)C60.5517 (2)0.8133 (3)0.7211 (2)0.0221 (5)C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0224 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)		x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br20.57429 (3)1.12760 (3)0.76735 (2)0.03212 (12)O10.6650 (2)0.4317 (2)1.04372 (14)0.0253 (4)O20.7998 (2)0.6540 (2)1.37265 (15)0.0268 (4)H2O0.81500.74161.39790.040*O30.50326 (19)0.8555 (2)0.61613 (15)0.0228 (5)N10.6742 (2)0.6890 (2)1.04718 (16)0.0234 (5)H1N0.69160.76641.09140.028*C10.6888 (3)0.5517 (3)1.0935 (2)0.0216 (5)C20.7347 (3)0.5508 (3)1.2123 (2)0.0228 (5)H20.74690.45771.25010.028*C30.6344 (3)0.7255 (3)0.9367 (2)0.0217 (5)C40.5979 (3)0.6159 (3)0.8574 (2)0.0221 (5)H40.59950.51180.87550.027*C50.5590 (3)0.618 (3)0.7211 (2)0.0221 (5)C70.5887 (3)0.9197 (3)0.8032 (2)0.0228 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0224 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)	Br1	0.51024 (3)	0.51328 (3)	0.64286 (2)	0.03073 (12)
O10.6650 (2)0.4317 (2)1.04372 (14)0.0253 (4)O20.7998 (2)0.6540 (2)1.37265 (15)0.0268 (4)H2O0.81500.74161.39790.040*O30.50326 (19)0.8555 (2)0.61613 (15)0.0248 (4)N20.7577 (2)0.6746 (2)1.26323 (17)0.0228 (5)N10.6742 (2)0.6890 (2)1.04718 (16)0.0234 (5)H1N0.69160.76641.09140.028*C10.6888 (3)0.5517 (3)1.0935 (2)0.0216 (5)C20.7347 (3)0.5508 (3)1.2123 (2)0.0235 (5)H20.74690.45771.25010.028*C30.6344 (3)0.7255 (3)0.9367 (2)0.0217 (5)C40.5979 (3)0.6159 (3)0.8574 (2)0.0221 (5)H40.59950.51180.87550.027*C50.5590 (3)0.6618 (3)0.7211 (2)0.0221 (5)C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)	Br2	0.57429 (3)	1.12760 (3)	0.76735 (2)	0.03212 (12)
O20.7998 (2)0.6540 (2)1.37265 (15)0.0268 (4)H2O0.81500.74161.39790.040*O30.50326 (19)0.8555 (2)0.61613 (15)0.0248 (4)N20.7577 (2)0.6746 (2)1.26323 (17)0.0228 (5)N10.6742 (2)0.6890 (2)1.04718 (16)0.0234 (5)H1N0.69160.76641.09140.028*C10.6888 (3)0.5517 (3)1.0935 (2)0.0216 (5)C20.7347 (3)0.5508 (3)1.2123 (2)0.0235 (5)H20.74690.45771.25010.028*C30.6344 (3)0.7255 (3)0.9367 (2)0.0217 (5)C40.59950.51180.8754 (2)0.0221 (5)H40.59950.51180.87550.027*C50.5590 (3)0.6618 (3)0.7211 (2)0.0221 (5)C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)	01	0.6650 (2)	0.4317 (2)	1.04372 (14)	0.0253 (4)
H2O0.81500.74161.39790.040*O30.50326 (19)0.8555 (2)0.61613 (15)0.0248 (4)N20.7577 (2)0.6746 (2)1.26323 (17)0.0228 (5)N10.6742 (2)0.6890 (2)1.04718 (16)0.0234 (5)H1N0.69160.76641.09140.028*C10.6888 (3)0.5517 (3)1.0935 (2)0.0216 (5)C20.7347 (3)0.5508 (3)1.2123 (2)0.0235 (5)H20.74690.45771.25010.028*C30.6344 (3)0.7255 (3)0.9367 (2)0.0217 (5)C40.5979 (3)0.6159 (3)0.8574 (2)0.0221 (5)H40.59950.51180.87550.027*C50.5590 (3)0.6618 (3)0.7514 (2)0.0218 (5)C60.5517 (2)0.8133 (3)0.7211 (2)0.0221 (5)C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)	O2	0.7998 (2)	0.6540 (2)	1.37265 (15)	0.0268 (4)
O30.50326 (19)0.8555 (2)0.61613 (15)0.0248 (4)N20.7577 (2)0.6746 (2)1.26323 (17)0.0228 (5)N10.6742 (2)0.6890 (2)1.04718 (16)0.0234 (5)H1N0.69160.76641.09140.028*C10.6888 (3)0.5517 (3)1.0935 (2)0.0216 (5)C20.7347 (3)0.5508 (3)1.2123 (2)0.0235 (5)H20.74690.45771.25010.028*C30.6344 (3)0.7255 (3)0.9367 (2)0.0217 (5)C40.5979 (3)0.6159 (3)0.8574 (2)0.0221 (5)H40.59950.51180.87550.027*C50.5590 (3)0.6618 (3)0.7514 (2)0.0218 (5)C60.5517 (2)0.8133 (3)0.7211 (2)0.0221 (5)C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)	H2O	0.8150	0.7416	1.3979	0.040*
N20.7577 (2)0.6746 (2)1.26323 (17)0.0228 (5)N10.6742 (2)0.6890 (2)1.04718 (16)0.0234 (5)H1N0.69160.76641.09140.028*C10.6888 (3)0.5517 (3)1.0935 (2)0.0216 (5)C20.7347 (3)0.5508 (3)1.2123 (2)0.0235 (5)H20.74690.45771.25010.028*C30.6344 (3)0.7255 (3)0.9367 (2)0.0217 (5)C40.5979 (3)0.6159 (3)0.8574 (2)0.0221 (5)H40.59950.51180.87550.027*C50.5590 (3)0.6618 (3)0.7211 (2)0.0221 (5)C60.5517 (2)0.8133 (3)0.7211 (2)0.0221 (5)C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)	O3	0.50326 (19)	0.8555 (2)	0.61613 (15)	0.0248 (4)
N10.6742 (2)0.6890 (2)1.04718 (16)0.0234 (5)H1N0.69160.76641.09140.028*C10.6888 (3)0.5517 (3)1.0935 (2)0.0216 (5)C20.7347 (3)0.5508 (3)1.2123 (2)0.0235 (5)H20.74690.45771.25010.028*C30.6344 (3)0.7255 (3)0.9367 (2)0.0217 (5)C40.5979 (3)0.6159 (3)0.8574 (2)0.0221 (5)H40.59950.51180.87550.027*C50.5590 (3)0.6618 (3)0.7211 (2)0.0221 (5)C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)	N2	0.7577 (2)	0.6746 (2)	1.26323 (17)	0.0228 (5)
H1N0.69160.76641.09140.028*C10.6888 (3)0.5517 (3)1.0935 (2)0.0216 (5)C20.7347 (3)0.5508 (3)1.2123 (2)0.0235 (5)H20.74690.45771.25010.028*C30.6344 (3)0.7255 (3)0.9367 (2)0.0217 (5)C40.5979 (3)0.6159 (3)0.8574 (2)0.0221 (5)H40.59950.51180.87550.027*C50.5590 (3)0.6618 (3)0.7211 (2)0.0218 (5)C60.5517 (2)0.8133 (3)0.7211 (2)0.0221 (5)C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)	N1	0.6742 (2)	0.6890 (2)	1.04718 (16)	0.0234 (5)
C10.6888 (3)0.5517 (3)1.0935 (2)0.0216 (5)C20.7347 (3)0.5508 (3)1.2123 (2)0.0235 (5)H20.74690.45771.25010.028*C30.6344 (3)0.7255 (3)0.9367 (2)0.0217 (5)C40.5979 (3)0.6159 (3)0.8574 (2)0.0221 (5)H40.59950.51180.87550.027*C50.5590 (3)0.6618 (3)0.7514 (2)0.0218 (5)C60.5517 (2)0.8133 (3)0.7211 (2)0.0221 (5)C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)	H1N	0.6916	0.7664	1.0914	0.028*
C20.7347 (3)0.5508 (3)1.2123 (2)0.0235 (5)H20.74690.45771.25010.028*C30.6344 (3)0.7255 (3)0.9367 (2)0.0217 (5)C40.5979 (3)0.6159 (3)0.8574 (2)0.0221 (5)H40.59950.51180.87550.027*C50.5590 (3)0.6618 (3)0.7514 (2)0.0218 (5)C60.5517 (2)0.8133 (3)0.7211 (2)0.0228 (5)C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)	C1	0.6888 (3)	0.5517 (3)	1.0935 (2)	0.0216 (5)
H20.74690.45771.25010.028*C30.6344 (3)0.7255 (3)0.9367 (2)0.0217 (5)C40.5979 (3)0.6159 (3)0.8574 (2)0.0221 (5)H40.59950.51180.87550.027*C50.5590 (3)0.6618 (3)0.7514 (2)0.0218 (5)C60.5517 (2)0.8133 (3)0.7211 (2)0.0221 (5)C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)	C2	0.7347 (3)	0.5508 (3)	1.2123 (2)	0.0235 (5)
C30.6344 (3)0.7255 (3)0.9367 (2)0.0217 (5)C40.5979 (3)0.6159 (3)0.8574 (2)0.0221 (5)H40.59950.51180.87550.027*C50.5590 (3)0.6618 (3)0.7514 (2)0.0218 (5)C60.5517 (2)0.8133 (3)0.7211 (2)0.0221 (5)C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)	H2	0.7469	0.4577	1.2501	0.028*
C40.5979 (3)0.6159 (3)0.8574 (2)0.0221 (5)H40.59950.51180.87550.027*C50.5590 (3)0.6618 (3)0.7514 (2)0.0218 (5)C60.5517 (2)0.8133 (3)0.7211 (2)0.0221 (5)C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)	C3	0.6344 (3)	0.7255 (3)	0.9367 (2)	0.0217 (5)
H40.59950.51180.87550.027*C50.5590 (3)0.6618 (3)0.7514 (2)0.0218 (5)C60.5517 (2)0.8133 (3)0.7211 (2)0.0221 (5)C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)	C4	0.5979 (3)	0.6159 (3)	0.8574 (2)	0.0221 (5)
C50.5590 (3)0.6618 (3)0.7514 (2)0.0218 (5)C60.5517 (2)0.8133 (3)0.7211 (2)0.0221 (5)C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)	H4	0.5995	0.5118	0.8755	0.027*
C60.5517 (2)0.8133 (3)0.7211 (2)0.0221 (5)C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)	C5	0.5590 (3)	0.6618 (3)	0.7514 (2)	0.0218 (5)
C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)H80.65620.95240.96450.029*C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)	C6	0.5517 (2)	0.8133 (3)	0.7211 (2)	0.0221 (5)
C8 0.6305 (3) 0.8778 (3) 0.9101 (2) 0.0242 (6) H8 0.6562 0.9524 0.9645 0.029* C9 0.6056 (3) 0.8606 (4) 0.5605 (2) 0.0332 (6)	C7	0.5887 (3)	0.9197 (3)	0.8032 (2)	0.0238 (5)
H8 0.6562 0.9524 0.9645 0.029* C9 0.6056 (3) 0.8606 (4) 0.5605 (2) 0.0332 (6)	C8	0.6305 (3)	0.8778 (3)	0.9101 (2)	0.0242 (6)
C9 0.6056 (3) 0.8606 (4) 0.5605 (2) 0.0332 (6)	H8	0.6562	0.9524	0.9645	0.029*
	C9	0.6056 (3)	0.8606 (4)	0.5605 (2)	0.0332 (6)
H9A 0.6683 0.9431 0.5894 0.050*	H9A	0.6683	0.9431	0.5894	0.050*
H9B0.56350.87760.48400.050*	H9B	0.5635	0.8776	0.4840	0.050*
H9C 0.6544 0.7645 0.5704 0.050*	H9C	0.6544	0.7645	0.5704	0.050*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0466 (2)	0.02593 (18)	0.01798 (18)	-0.00608 (11)	0.00633 (13)	-0.00244 (9)
Br2	0.0420 (2)	0.01905 (17)	0.0298 (2)	-0.00089 (10)	0.00100 (13)	0.00607 (10)

supplementary materials

O1	0.0388 (11)	0.0189 (9)	0.0175 (9)	-0.0002 (8)	0.0067 (8)	0.0009 (7)
O2	0.0400 (11)	0.0222 (9)	0.0154 (9)	-0.0022 (8)	0.0033 (8)	0.0001 (7)
O3	0.0255 (9)	0.0305 (10)	0.0166 (9)	-0.0010 (7)	0.0031 (7)	0.0081 (7)
N2	0.0274 (12)	0.0235 (11)	0.0159 (11)	-0.0009 (8)	0.0033 (8)	0.0000 (8)
N1	0.0321 (12)	0.0184 (10)	0.0165 (11)	-0.0005 (9)	0.0015 (9)	0.0004 (8)
C1	0.0235 (12)	0.0220 (12)	0.0181 (13)	-0.0011 (10)	0.0042 (10)	0.0000 (10)
C2	0.0307 (14)	0.0196 (12)	0.0193 (13)	-0.0001 (10)	0.0054 (10)	0.0011 (10)
C3	0.0243 (12)	0.0209 (12)	0.0190 (13)	0.0013 (10)	0.0046 (10)	0.0015 (9)
C4	0.0246 (13)	0.0197 (12)	0.0215 (14)	0.0008 (9)	0.0056 (10)	0.0028 (9)
C5	0.0214 (12)	0.0250 (12)	0.0184 (13)	-0.0019 (10)	0.0045 (10)	-0.0018 (10)
C6	0.0188 (12)	0.0261 (13)	0.0195 (13)	0.0009 (10)	0.0022 (10)	0.0053 (10)
C7	0.0255 (13)	0.0184 (12)	0.0248 (14)	-0.0010 (10)	0.0028 (10)	0.0060 (10)
C8	0.0267 (13)	0.0244 (13)	0.0189 (13)	-0.0024 (10)	0.0024 (10)	0.0001 (9)
C9	0.0345 (16)	0.0420 (16)	0.0244 (15)	0.0030 (12)	0.0103 (12)	0.0102 (12)

Geometric parameters (Å, °)

Br1—C5	1.892 (3)	С2—Н2	0.9500
Br2—C7	1.894 (3)	C3—C4	1.390 (4)
O1—C1	1.233 (3)	C3—C8	1.390 (4)
O2—N2	1.379 (3)	C4—C5	1.385 (3)
O2—H2o	0.8400	C4—H4	0.9500
O3—C6	1.368 (3)	C5—C6	1.394 (4)
O3—C9	1.445 (3)	C6—C7	1.395 (4)
N2—C2	1.268 (3)	С7—С8	1.386 (4)
N1—C1	1.346 (3)	С8—Н8	0.9500
N1—C3	1.417 (3)	С9—Н9А	0.9800
N1—H1N	0.8800	С9—Н9В	0.9800
C1—C2	1.484 (4)	С9—Н9С	0.9800
N2—O2—H2o	104.6	C4—C5—C6	122.8 (2)
С6—О3—С9	113.1 (2)	C4—C5—Br1	118.79 (19)
C2—N2—O2	112.6 (2)	C6—C5—Br1	118.39 (19)
C1—N1—C3	128.6 (2)	O3—C6—C5	121.4 (2)
C1—N1—H1N	115.7	O3—C6—C7	121.7 (2)
C3—N1—H1N	115.7	C5—C6—C7	116.8 (2)
O1-C1-N1	124.3 (2)	C8—C7—C6	121.9 (2)
O1—C1—C2	120.1 (2)	C8—C7—Br2	119.2 (2)
N1—C1—C2	115.7 (2)	C6—C7—Br2	118.81 (19)
N2—C2—C1	119.9 (2)	C7—C8—C3	119.3 (2)
N2—C2—H2	120.0	С7—С8—Н8	120.4
С1—С2—Н2	120.0	С3—С8—Н8	120.4
C4—C3—C8	120.6 (2)	О3—С9—Н9А	109.5
C4—C3—N1	122.4 (2)	О3—С9—Н9В	109.5
C8—C3—N1	117.0 (2)	Н9А—С9—Н9В	109.5
C5—C4—C3	118.5 (2)	О3—С9—Н9С	109.5
С5—С4—Н4	120.7	Н9А—С9—Н9С	109.5
C3—C4—H4	120.7	Н9В—С9—Н9С	109.5
C3—N1—C1—O1	-2.1 (4)	C4—C5—C6—O3	-175.0 (2)
C3—N1—C1—C2	178.9 (2)	Br1-C5-C6-O3	3.8 (3)

supplementary materials

O2—N2—C2—C1	-179.9 (2)	C4—C5—C6—C7	1.3 (4)
01—C1—C2—N2	-179.2 (3)	Br1C5C6C7	-179.86 (19)
N1-C1-C2-N2	-0.2 (4)	O3—C6—C7—C8	176.2 (2)
C1—N1—C3—C4	2.9 (4)	C5—C6—C7—C8	-0.1 (4)
C1—N1—C3—C8	-178.4 (3)	O3—C6—C7—Br2	-1.3 (4)
C8—C3—C4—C5	0.7 (4)	C5—C6—C7—Br2	-177.56 (18)
N1—C3—C4—C5	179.3 (2)	C6—C7—C8—C3	-0.8 (4)
C3—C4—C5—C6	-1.7 (4)	Br2—C7—C8—C3	176.7 (2)
C3-C4-C5-Br1	179.57 (19)	C4—C3—C8—C7	0.5 (4)
C9—O3—C6—C5	-88.4 (3)	N1—C3—C8—C7	-178.2 (2)
C9—O3—C6—C7	95.4 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1n···N2	0.88	2.30	2.702 (3)	108
O2—H2o···O1 ⁱ	0.84	1.83	2.672 (3)	175
C2—H2···N2 ⁱⁱ	0.95	2.51	3.345 (3)	146

Symmetry codes: (i) -x+3/2, y+1/2, -z+5/2; (ii) -x+3/2, y-1/2, -z+5/2.

